
Secure Your Containers and Safeguard
Your Code with Confidence!

www.practical-devsecops.com

Container Security 101

Secure Every Layer

Contents
Introduction

Understanding Container Fundamentals and Security Implications

Container Image Security Best Practices

Runtime Security and Container Orchestration

Network Security in Containerized Environments

Advanced Container Security Techniques and Tools

Key Takeaways

Container Security 101 eBook

Introduction to

Container Security

Overview of Container Security

Today's computer programs often run in special packages called containers. Think
of containers like sealed boxes that hold everything a program needs to run. This
new way of running programs is great, but it needs special care to keep it safe.

Here's why container security matters: One program might use many containers,
each with its parts from different places. Each piece needs to be checked and
protected to keep the whole program safe.

This guide will help you�

� Understand how to keep containers saf�
� Learn what problems to watch fo�
� Find out how to fix security issues quickl�
� Keep your programs protected from bad guys

Whether you work with containers every day or are just learning about them, this
guide will show you how to protect your programs better. You'll learn everything
from basic safety steps to advanced ways to catch problems early.

The main goal is simple: help you build and run safer container-based programs
that can stand up to today's security threats.

www.practical-devsecops.com 1

Container Security 101 eBook

chapter 1

Understanding
Container
Fundamentals and
Security Implications

Computer containers are changing how we run programs. While they make things
easier, we need new ways to keep them safe. The old ways of protecting computer
systems don't work as well with containers.

Think of containers as sealed packages that hold programs. Each container has its
walls to keep it separate from other containers. But these walls need special
security rules to work right.

To keep containers safe, you need to�

� Check each piece that goes into the containe�
� Make sure containers can't interfere with each othe�
� Watch how containers behave when runnin�
� Catch problems before they cause trouble

This guide will teach you these new security rules. You'll learn how to protect your
container-based programs from the ground up. Whether you're new to containers
or use them every day, you'll discover better ways to keep your programs safe.

The key is understanding that container security is different from old computer
security. Once you know these differences, you can build stronger protection for
your programs.

www.practical-devsecops.com 2

Container Security 101 eBook

Container Architecture: The Building
Blocks
Containers use special safety features built into Linux to keep programs separate
and controlled. There are two main parts that work together to protect containers:

First are namespaces, which create private spaces for each container. These
spaces control different things�

� Each container gets its own list of running program�
� Each has its own private networ�
� Each sees only its own file�
� Each has its own users and permission�
� Each controls how its programs talk to each othe�
� Each can have its own computer name

Second are control groups (cgroups), which manage how much of the computer's
power each container can use�

� They limit how much memory containers can us�
� They control how much processing power containers ge�
� They make sure one container doesn't slow down other�
� They watch how much power each container uses

These features work like walls and rules that keep containers separate and make
sure they play nice with each other. They help stop containers from causing
problems for other containers or the main computer system.

www.practical-devsecops.com 3

Container Security 101 eBook

The Container Security Model
Virtual machines and containers protect programs differently. Virtual machines are
like having separate computers inside your computer - each with its own complete
system. This keeps programs very safe but uses lots of power.

Containers work more simply by sharing one system, making them faster but
needing extra security rules. Since containers share more parts of the computer,
we need to watch them carefully and set clear boundaries. Both ways work well -
you just need to pick what's best for your needs.

Advantages�

�� Containers start faster because they don't need to boot an entire O�
�� They use fewer resources since they share the kerne�
�� You can run more containers than VMs on the same hardware

Security Considerations�

�� Kernel vulnerabilities can affect all containers on the hos�
�� Resource isolation requires careful configuratio�
�� Container breakouts have a more direct path to the host

Security Boundaries and Their
Implementation
Linux kernel security features create the boundaries between containers and the
host system. These features include:

Capabilities

Instead of running containers as root, you should drop unnecessary capabilities
and retain only those application needs. For example:

www.practical-devsecops.com 4

Container Security 101 eBook

FROM ubuntu:20.04  

Create a non-root user 
RUN useradd -ms /bin/bash appuser  

Switch to the non-root user 
USER appuser  

... rest of your Dockerfile instructions ...

Seccomp Profiles

Seccomp filters restrict which system calls your container can make. You should�

�� Create custom seccomp profiles for your application�
�� Block unnecessary system call�
�� Monitor system call patterns to detect anomalies

AppArmor and SELinux

These Mandatory Access Control systems provide additional security layers�

� AppArmor profiles define file access permission�
� SELinux policies control process interaction�
� Both help prevent container breakouts

Resource Constraints and Security
Resource limitations serve both operational and security purposes. You must�

�� Set appropriate memory limits to prevent DoS attack�
�� Configure CPU quotas to ensure fair resource sharin�
�� Implement disk I/O controls to maintain system stabilit�
�� Monitor resource usage for potential security incidents

www.practical-devsecops.com 5

Container Security 101 eBook

Consider this example of secure resource configuration:

Kubernetes pod specification with security
constraints 
apiVersion: v1 
kind: Pod 
metadata: 
 name: secure-pod 
spec: 
 securityContext: 
 runAsUser: 1000 # Run as non-root user 
 runAsGroup: 3000 # Run as non-root group 
 fsGroup: 2000 # Set file system group 
 containers: 
 - name: app 
 image: nginx 
 resources: 
 limits: 
 memory: "256Mi" # Limit memory usage to 256
MiB 
 cpu: "500m" # Limit CPU usage to 500
milliCPU 
 requests: 
 memory: "128Mi" # Request 128 MiB of memory 
 cpu: "250m" # Request 250 milliCPU 
 securityContext: 
 readOnlyRootFilesystem: true # Ensure the root
filesystem is read-only 
 allowPrivilegeEscalation: false # Prevent
privilege escalation 
 capabilities: 
 drop: 
 - ALL # Drop all Linux capabilities

www.practical-devsecops.com 6

Container Security 101 eBook

Practical Implementation Steps
To implement these security concepts effectively:

Start with the principle of least privilege�

� Run containers as non-root user�
� Remove unnecessary capabilitie�
� Implement read-only root filesystems

Configure resource limits�

� Set appropriate memory constraint�
� Define CPU quota�
� Implement disk I/O controls

Enable security features�

� Activate SELinux or AppArmo�
� Implement seccomp profile�
� Configure network policies

Monitor and audit�

� Track resource usag�
� Monitor system call�
� Log security events

Container security works like layers of protection that fit together. You need to get
the basics right first, then add more security as you go. Here's what matters most:

Each safety feature we talked about does something important�

� It sets clear boundaries between container�
� It controls what each container can d�
� It monitors how containers use resources

www.practical-devsecops.com 7

Container Security 101 eBook

When you use all these features together, your containers stay safer. Once you
understand these basics, you can learn more advanced ways to protect your
containers.

Next, we'll look at how to keep the stuff inside containers safe. You'll learn how to
check that everything in your containers is secure before you use them.

Remember: Good container security starts with these basics. Get them right, and
you'll build stronger, safer programs.

www.practical-devsecops.com 8

Container Security 101 eBook

chapter 2

Container Image
Security Best Practices

Container images are like recipes for your programs. If the recipe has a problem,
every program made from it will be unsafe. That's why we need to check our
container images carefully. We should use trusted sources, check all parts, and
remove anything not needed. This keeps all our programs safer from the start.

Selecting and Verifying Base Images
Start your container security journey with the foundation - your base image. Think
of base images like the foundation of a house; you need to trust the materials
you're building upon.

When selecting base images�

�� Choose official images from trusted repositories. Docker Official Images and
distro-maintained images provide a reliable starting point. For example:

Prefer official images over unknown sources 
FROM ubuntu:20.04 # Good: Official Ubuntu image 
Instead of: FROM random-user/ubuntu # Risky:
Unknown source

www.practical-devsecops.com 9

Container Security 101 eBook

Use specific version tags rather than 'latest' to ensure consistency:

Be specific with versions 
FROM node:16.14.2-alpine3.15 # Good: Specific version 
Instead of: FROM node:latest # Risky: Unpredictable
content

Implement image verification using content trust:

Enable Docker Content Trust 
export DOCKER_CONTENT_TRUST=1 
docker pull ubuntu:20.04

Building Secure Images
Let's create images that minimize attack surface and maximize security. Here's
how:

1. Minimize Image Size

Remove unnecessary components to reduce attack surface:

dockerfile 
FROM alpine:3.15 
RUN apk add --no-cache python3 && \ 
 rm -rf /var/cache/apk/*

www.practical-devsecops.com 10

Container Security 101 eBook

2. Implement Multi-stage Builds

Use multi-stage builds to separate build dependencies from runtime requirements:

dockerfile 
Build stage 
FROM node:16.14.2 AS builder 
WORKDIR /app 
COPY package*.json ./ 
RUN npm install 
COPY . . 
RUN npm run build  

Production stage 
FROM node:16.14.2-alpine 
COPY --from=builder /app/dist /app 
USER node 
CMD ["node", "app/server.js"]

3. Implement Security Scanning

Integrate vulnerability scanning into your build process. Here's how to use tools
like Trivy:

bash 
Scan image for vulnerabilities 
trivy image your-image:<Version># Fail builds on high
severity findings 
trivy image --exit-code 1 --severity HIGH, CRITICAL
your-image:<Version>

www.practical-devsecops.com 11

Container Security 101 eBook

Managing Image Security

Securing your images doesn't stop at build time. You need ongoing management:

3. Implement Security Scanning

1. Implement Image Signing

Sign your images to verify their authenticity:

bash 
Sign an image 
docker trust sign myregistry.azurecr.io/myapp:1.0  

Verify signed image 
docker trust inspect myregistry.azurecr.io/myapp:1.0

2. Set Up Access Controls

Implement strict access controls for your container registry:

yaml 
Example Azure Container Registry role assignment 
az role assignment create \ 
 --role AcrPull \ 
 --assignee user@example.com \ 
 --scope /subscriptions/{subscription-id}/
resourceGroups/{resource-group}/providers/
Microsoft.ContainerRegistry/registries/{registry-name}

www.practical-devsecops.com 12

Container Security 101 eBook

3. Automate Security Testing

Integrate security testing into your CI/CD pipeline:

yaml 
Example GitHub Actions workflow 
name: Container Security 
on: [push] 
jobs: 
 security: 
 runs-on: ubuntu-latest 
 steps: 
 - uses: actions/checkout@v2 
 - name: Build image 
 run: docker build -t myapp:${{ github.sha }} . 
 - name: Run Trivy vulnerability scanner 
 uses: aquasecurity/trivy-action@master 
 with: 
 image-ref: myapp:${{ github.sha }} 
 format: 'table' 
 exit-code: '1' 
 ignore-unfixed: true 
 severity: 'CRITICAL,HIGH'

Supply Chain Security

Protect your entire container supply chain:

Implement Software Bill of Materials (SBOM):

www.practical-devsecops.com 13

Container Security 101 eBook

Specify a specific version of Alpine 
syft alpine:3.15.0 -o json > sbom.json  

Analyze SBOM for vulnerabilities 
grype sbom:sbom.json

Set up continuous monitoring:

� Monitor base images for new vulnerabilitie�
� Track dependency update�
� Implement automated rebuilds when security updates are available

Implement Software Bill of Materials (SBOM):

aws ecr put-image-scanning-configuration \ 
 --repository-name myapp \ 
 --image-scanning-configuration scanOnPush=true

Best Practices for Ongoing Security
Here's a simple way to keep container images safe:

� Update base images automaticall�
� Check for security problems regularl�
� Rebuild images when fixes come out

Track Everything

� Write down what's in each imag�
� Keep notes about security choice�
� List known problems and fixes

www.practical-devsecops.com 14

Container Security 101t eBook

Be Ready for Problems

� Write down what's in each imag�
� Keep notes about security choice�
� List known problems and fixes

That's all you need to remember to keep your container images safe and up to
date.

www.practical-devsecops.com 15

Container Security 101 eBook

chapter 3

Runtime Security

and Container
Orchestration

Protecting running containers is more than just good setup - you need to watch
them carefully while they work. Like guarding a busy building, you must watch for
unusual behavior, catch problems quickly, and control what each container can
do. Good security means paying attention all the time, not just during setup. This
helps stop small problems from becoming big ones.

Runtime Protection: The First Line of
Defense
Your containers need protection while they run, just like your body needs to stay
healthy. Good protection means watching for problems and fixing them fast, but
making sure your programs still work well. When you catch problems early, you
can fix them before they cause big trouble.

Container Hardening
Start with these essential hardening measures:

www.practical-devsecops.com 16

Container Security 101 eBook

Container Hardening
Start with these essential hardening measures:

#Dockerfile 
FROM alpine:3.15  

Create a non-root user and group 
RUN addgroup -S appgroup && adduser -S appuser -G
appgroup  

Set the working directory 
WORKDIR /app  

Copy application files and set ownership 
COPY --chown=appuser:appgroup ./app .  

Switch to the non-root user 
USER appuser  

Set restrictive file permissions 
RUN chmod -R 500 /app/*  

Define the entry point 
ENTRYPOINT ["./app"]

I've implemented several crucial security controls here:

�� Created a non-root use�
�� Set appropriate file permission�
�� Restricted the working director�
�� Removed unnecessary privileges

www.practical-devsecops.com 17

Container Security 101 eBook

Resource Isolation
Implement strict resource controls to prevent container breakout attempts:

apiVersion: v1 
kind: Pod 
metadata: 
 name: secure-app 
spec: 
 containers: 
 - name: app 
 image: your-image-repo/your-image-name:your-tag #
Specify your image here 
 securityContext: 
 runAsNonRoot: true 
 allowPrivilegeEscalation: false 
 capabilities: 
 drop: 
 - ALL 
 readOnlyRootFilesystem: true # Optional: Set the
filesystem to read-only 
 resources: 
 limits: 
 memory: "256Mi" 
 cpu: "500m" 
 requests: 
 memory: "128Mi" 
 cpu: "250m"

This configuration:

� Prevents privilege escalatio�
� Drops unnecessary capabilitie�
� Sets resource limit�
� Enforces non-root execution

www.practical-devsecops.com 18

Container Security 101 eBook

Kubernetes Security: Orchestrating
Secure Deployments
When managing containers at scale, Kubernetes becomes your command center.
Let's secure it properly.

Pod Security Policies

It's important to note that as of Kubernetes 1.21, PodSecurityPolicy is deprecated
and will be removed in future releases. It's recommended to transition to using
Pod Security Admission or other security mechanisms like Open Policy Agent
(OPA) with Gatekeeper for future-proofing your security policies.

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

spec:

 privileged: false # Prevents privileged containers

 seLinux:

 rule: RunAsAny # Allows any SELinux context

 runAsUser:

 rule: MustRunAsNonRoot # Requires non-root
execution

 fsGroup:

 rule: RunAsAny # Allows any fsGroup

 runAsGroup:

 rule: MustRunAs # Optional: Specify a non-root
group

 ranges:

 - min: 1000

 max: 65535

www.practical-devsecops.com 19

Container Security 101 eBook

supplementalGroups:

 rule: RunAsAny # Allows any supplemental groups

 readOnlyRootFilesystem: true # Optional: Enforce
read-only root filesystem

 volumes:

 - configMap

 - emptyDir

 - projected

 - secret

 - downwardAPI

 - persistentVolumeClaim

 allowPrivilegeEscalation: false # Prevents
privilege escalation

 defaultAllowPrivilegeEscalation: false

Default setting for privilege escalation.

This policy:

� Prevents privileged container�
� Requires non-root executio�
� Restricts volume type�
� Enforces SELinux controls

www.practical-devsecops.com 20

Container Security 101 eBook

RBAC Configuration
Implement Role-Based Access Control to limit permissions:

yaml 
Example RBAC configuration 
apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
 namespace: production 
 name: pod-reader 
rules: 
- apiGroups: [""] 
 resources: ["pods"] 
 verbs: ["get", "list"] 

apiVersion: rbac.authorization.k8s.io/v1 
kind: RoleBinding 
metadata: 
 name: read-pods 
 namespace: production 
subjects: 
- kind: User 
 name: alice 
 apiGroup: rbac.authorization.k8s.io 
roleRef: 
 kind: Role 
 name: pod-reader 
 apiGroup: rbac.authorization.k8s.io

www.practical-devsecops.com 21

Container Security 101 eBook

Secrets Management
Protect sensitive information using Kubernetes secrets:

yaml 
Create encrypted secrets 
apiVersion: v1 
kind: Secret 
metadata: 
 name: app-secrets 
type: Opaque 
data: 
 API_KEY: <base64-encoded-value> 

Mount secrets securely 
apiVersion: v1 
kind: Pod 
metadata: 
 name: secure-app 
spec: 
 containers: 
 - name: app 
 volumeMounts: 
 - name: secrets 
 mountPath: /etc/secrets 
 readOnly: true 
 volumes: 
 - name: secrets 
 secret: 
 secretName: app-secrets

www.practical-devsecops.com 22

Container Security 101 eBook

Runtime Monitoring and Detection
Implement comprehensive monitoring to detect security events:

yaml 
Example Falco rule for runtime security 
- rule: Terminal Shell in Container 
 desc: A shell was spawned by a container with an
attached terminal 
 condition: > 
 container.id != host and 
 proc.name = bash and 
 evt.type = execve and 
 evt.dir = < and 
 container.tty = true 
 output: > 
 Shell spawned in a container with terminal
(user=%user.name 
 container_id=%container.id
container_name=%container.name) 
 priority: WARNING

Container Lifecycle Management
Implement secure container lifecycle policies:

www.practical-devsecops.com 23

Container Security 101 eBook

Container Lifecycle Management
Implement secure container lifecycle policies:

�� Automatic container updates:

#apiVersion: apps/v1 
kind: Deployment 
metadata: 
 name: secure-app 
spec: 
 replicas: 3 # Specify the number of replicas 
 strategy: 
 type: RollingUpdate 
 rollingUpdate: 
 maxUnavailable: 25% # Up to 25% of the pods can
be unavailable during the update 
 maxSurge: 25% # Up to 25% more pods than
the desired number can be created during the update 
 template: 
 metadata: 
 labels: 
 app: secure-app 
 spec: 
 containers: 
 - name: app 
 image: your-image-repo/your-image-name:your-
tag # Specify your image here 
 ports: 
 - containerPort: 80

www.practical-devsecops.com 24

Container Security 101 eBook

Health monitoring:

yaml 
spec:

 containers:

 - name: app

 image: your-image-repo/image:your-tag # Specify
your image here

 ports:

 - containerPort: 8080

 livenessProbe:

 httpGet:

 path: /health

 port: 8080

 initialDelaySeconds: 30

 periodSeconds: 10

 readinessProbe:

 httpGet:

 path: /ready

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 5

www.practical-devsecops.com 25

Container Security 101 eBook

Best Practices for Runtime Security
Implement secure container lifecycle policies:

yaml 
apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny

 namespace: your-namespace # Specify the namespace

spec:

 podSelector: {} # Selects all pods in the namespace

 policyTypes:

 - Ingress

 - Egress

Enable Audit Logging:

yaml 
apiVersion: audit.k8s.io/v1 
kind: Policy 
rules: 
- level: RequestResponse 
 resources: 
 - group: "" 
 resources: ["pods"]

Remember: Runtime security requires constant vigilance. Monitor your containers
continuously, respond to security events promptly, and regularly update your
security policies.

www.practical-devsecops.com 26

Container Security 101 eBook

chapter 4

Network Security in
Containerized
Environments

Container networks need special protection because programs are split into
pieces that talk to each other. We must make sure containers only connect with
the right partners and keep their messages safe. This helps stop problems before
they start.

Understanding Container Network
Architecture
Container networks connect program parts that need to work together. Like
controlling traffic on roads, we need rules about which containers can connect
and how they share information. This keeps programs safe while letting them work
together.

www.practical-devsecops.com 27

Container Security 101 eBook

Implementing Network Isolation
Let's start with a practical example of network isolation in Kubernetes:

yaml 
Network policy to restrict pod communication 
apiVersion: networking.k8s.io/v1 
kind: NetworkPolicy 
metadata: 
 name: restrict-access 
 namespace: production 
spec: 
 podSelector: 
 matchLabels: 
 app: web-app 
 policyTypes: 
 - Ingress 
 - Egress 
 ingress: 
 - from: 
 - namespaceSelector: 
 matchLabels: 
 environment: production 
 ports: 
 - protocol: TCP 
 port: 80 
 egress: 
 - to: 
 - podSelector: 
 matchLabels: 
 app: database 
 ports: 
 - protocol: TCP 
 port: 5432

www.practical-devsecops.com 28

Container Security 101t eBook

This policy creates a secure communication channel by:

� Allowing incoming traffic only from production namespac�
� Restricting outbound traffic to database pod�
� Specifying exact ports for communication

Service Mesh Security
Service mesh tools like Istio add extra security to container networks. They check
containers before letting them connect and keep their messages private. This
makes sure only the right containers can talk to each other.

yaml 
Istio Authentication Policy 
apiVersion: security.istio.io/v1beta1 
kind: PeerAuthentication 
metadata: 
 name: default 
 namespace: prod 
spec: 
 mtls: 
 mode: STRICT

The benefits include:

� Encrypted communication between service�
� Automatic certificate rotatio�
� Traffic monitoring and contro�
� Enhanced access control

www.practical-devsecops.com 29

Container Security 101t eBook

Load Balancer Security
Secure your load balancers to protect incoming traffic:

yaml 
Secure Ingress Configuration 
apiVersion: networking.k8s.io/v1 
kind: Ingress 
metadata: 
 name: secure-ingress 
 annotations: 
 nginx.ingress.kubernetes.io/ssl-redirect: "true" 
 nginx.ingress.kubernetes.io/force-ssl-redirect:
"true" 
spec: 
 tls: 
 - hosts: 
 - secure-app.example.com 
 secretName: tls-secret 
 rules: 
 - host: secure-app.example.com 
 http: 
 paths: 
 - path: / 
 pathType: Prefix 
 backend: 
 service: 
 name: web-service 
 port: 
 number: 443

www.practical-devsecops.com 30

Container Security 101t eBook

This configuration:

� Forces HTTPS connection�
� Implements TLS terminatio�
� Specifies allowed host�
� Defines secure routing rules

Implementing Network Controls
Let's build comprehensive network security controls:

Microsegmentation

Create granular network policies for each application component:

yaml 
Fine-grained network policy 
apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: api-network

 namespace: your-namespace # Specify the namespace

spec:

 podSelector:

 matchLabels:

 app: api

 policyTypes:

 - Ingress

 - Egress

 ingress:

www.practical-devsecops.com 31

Container Security 101t eBook

- from:

 - podSelector:

 matchLabels:

 role: frontend

 ports:

 - protocol: TCP

 port: 8080

API Security
Protect your APIs with authentication and rate limiting:

yaml 
API Gateway configuration 
apiVersion: networking.istio.io/v1alpha3 
kind: VirtualService 
metadata: 
 name: api-gateway 
spec: 
 hosts: 
 - api.example.com 
 http: 
 - route: 
 - destination: 
 host: api-service 

www.practical-devsecops.com 32

Container Security 101t eBook

fault: 
 delay: 
 percentage: 
 value: 100 
 fixedDelay: 5s 
 match: 
 - headers: 
 api-key: 
 exact: valid-key

Monitoring Network Traffic
Implement comprehensive network monitoring:

yaml 
Network monitoring configuration 
apiVersion: monitoring.coreos.com/v1 
kind: ServiceMonitor 
metadata: 
 name: network-monitor 
spec: 
 selector: 
 matchLabels: 
 app: network-metrics 
 endpoints: 
 - port: metrics 
 interval: 15s

www.practical-devsecops.com 33

Container Security 101t eBook

This setup allows you to:

� Track network pattern�
� Detect anomalie�
� Monitor bandwidth usag�
� Alert on suspicious activity

Network Security Best Practices
Default Deny Policies: Start with zero trust and explicitly allow required
communication:

yaml 
apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny-all

 namespace: your-namespace # Specify the namespace

spec:

 podSelector: {} # Selects all pods in the namespace

 policyTypes:

 - Ingress

 - Egress

Regular Security Audits:

Implement automated network security scanning:bash

Example network security scan 
kubectl-network-policy-advisor analyze \ 
 --namespace production \ 
 --report-file network-audit.json

www.practical-devsecops.com 34

Container Security 101t eBook

Encryption Everywhere:
� Ensure all network traffic is encrypted�
� Use TLS for external communicatio�
� Implement mutual TLS between service�
� Encrypt sensitive data at rest

Remember: Network security in containerized environments requires constant
attention and updates. Monitor your network traffic patterns, regularly review
security policies, and stay informed about new security threats and mitigation
strategies.

www.practical-devsecops.com 35

Container Security 101 eBook

chapter 5

Advanced Container
Security Techniques
and Tools

Advanced Security Controls

Runtime Application Self-Protection
(RASP)

yaml 
Example Falco custom rule 
- rule: Unexpected Child Process 
 desc: Container spawned unexpected process 
 condition: > 
 container and 
 proc.name != "app" and 
 proc.name != "node" 
 output: "Unexpected process spawned (proc=%proc.name
%proc.cmdline)" 
 priority: WARNING

www.practical-devsecops.com 36

Container Security 101 eBook

Behavioral Analysis Implementation

Python 
Example behavioral monitoring 
from kubernetes import client, config, watch

def analyze_pod_metrics(pod):

 # Implement your logic to analyze the pod's
behavior

 print(f"Analyzing pod: {pod.metadata.name} in
namespace: {pod.metadata.namespace}")

def monitor_pod_behavior():

 # Load the Kubernetes configuration

 config.load_kube_config() # Use
config.load_incluster_config() if running inside a
cluster

 v1 = client.CoreV1Api()

 w = watch.Watch()

 try:

 for event in
w.stream(v1.list_pod_for_all_namespaces):

 pod = event['object']

 analyze_pod_metrics(pod)

 except Exception as e:

 print(f"An error occurred: {e}")

 finally:

 w.stop()

if __name__ == "__main__":

 monitor_pod_behavior()

www.practical-devsecops.com 37

Container Security 101 eBook

Automated Response Systems

apiVersion: autoscaling/v2 
kind: HorizontalPodAutoscaler 
metadata: 
 name: security-autoscaler 
spec: 
 scaleTargetRef: 
 apiVersion: apps/v1 
 kind: Deployment 
 name: web-app 
 minReplicas: 1 # Optional: Specify minimum number of
replicas 
 maxReplicas: 5 # Optional: Specify maximum number of
replicas 
 metrics: 
 - type: Pods 
 pods: 
 metric: 
 name: security_score 
 target: 
 type: AverageValue 
 averageValue: 0.8

www.practical-devsecops.com 38

Container Security 101 eBook

Machine Learning Integration
Default Deny Policies: Start with zero trust and explicitly allow required
communication:

Python 
Example ML-based anomaly detection 
from sklearn.ensemble import IsolationForest

def detect_anomalies(container_metrics):

 # Initialize the Isolation Forest model

 model = IsolationForest(contamination=0.1)

 # Fit the model and predict anomalies

 predictions = model.fit_predict(container_metrics)

 return predictions 

www.practical-devsecops.com 39

Container Security 101 eBook

Threat Pattern Recognition

yaml 
ML-enhanced security policy 
apiVersion: security.example.com/v1 
kind: MLSecurityPolicy 
metadata: 
 name: ml-threat-detection 
spec: 
 modelPath: "models/threat-detection" 
 thresholds: 
 confidence: 0.95 
 falsePositiveRate: 0.01 
 actions: 
 - isolate 
 - log 
 - alert

www.practical-devsecops.com 40

Container Security 101 eBook

Blockchain Integration

yaml

Container integrity verification using blockchain 
apiVersion: blockchain.security/v1 
kind: IntegrityCheck 
metadata: 
 name: container-verify 
spec: 
 type: ethereum 
 smart_contract: 
 address: "0x123..." 
 method: "verifyIntegrity" 
 verification: 
 images: 
 - repository: production/app 
 tag: 3.12

www.practical-devsecops.com 41

Container Security 101 eBook

Real-time Security Monitoring

yaml 
Prometheus monitoring configuration 
apiVersion: monitoring.coreos.com/v1 
kind: ServiceMonitor 
metadata: 
 name: security-monitor 
spec: 
 endpoints: 
 - interval: 10s 
 path: /metrics 
 port: metrics 
 selector: 
 matchLabels: 
 security-monitor: "true"

www.practical-devsecops.com 42

Ensuring Product Security in DevSecOps eBook

Key Takeaways

� Containers need protection at every step. Think of it like a chain - each part
needs to be strong to keep everything safe�

� When building containers, start with safe pieces. Keep checking them as they
run, just like you'd check a car during a long trip�

� When lots of containers work together, we need special rules to keep them
safe. It's like making sure a big team follows safety rules�

� Container networks need special protection because they share information.
We need to make sure only the right messages get through�

� Check your containers often for problems. Fix little issues before they become
big ones. Regular checks help catch trouble early�

� Let smart tools help keep containers safe. These tools can spot problems faster
than people can, working day and night to protect things�

� Only let trusted people use and change containers. Keep track of who can do
what, like having special keys for different rooms�

� Use special safety tools made just for containers. These tools know how to find
and fix container problems quickly�

� Learn how containers really work to protect them better. The more you
understand them, the better you can keep them safe�

� New problems show up all the time, so keep learning new ways to protect
containers. What works today might not work tomorrow.

www.practical-devsecops.com 43

Become a Certified
Container Security Expert

Demand is high, and spots are limited! Secure your place today!

© 2025 Hysn Technologies Inc, All rights reserved

www.practical-devsecops.com

Get started

https://www.practical-devsecops.com/certified-container-security-expert/

